COLLABORATIVE RESEARCH IN PSYCHOPATHOLOGY

Formulated by

The Committee on Psychopathology of the Group for the Advancement of Psychiatry

Report No. 25

104 East 25th Street, New York 10, N. Y. January 1954

I. INTRODUCTION.
A. Handicaps to Psychiatric Research.
 1. Lack of Personnel.
 2. Lack of Time.
 3. Lack of Funds.
 4. Lack of Training in Research Methodology.
 5. Lack of Rewards for Research.
 6. Complexity of the Field.
 7. Lack of Administrative Support.
B. Factors Restricting the Range of Psychiatric Research.

II. TYPES OF RESEARCH.
A. Methods of Study.
 1. The Survey.
 3. Basic Research.
B. Process of Planning Research.
 1. Experimental Design.
 2. Program Design.
 3. Policy Design.
C. Levels of Research.
 1. Naturalistic Observation.
 2. Semi-naturalistic Observation.
 3. Free Laboratory Method.
 4. Controlled Laboratory Method.
D. Clinical Research.

III. TYPES OF COLLABORATION AND SIGNIFICANT COLLABORATIVE AREAS.
A. Types of Collaboration.
B. Significant Areas of Collaborative Research.

IV. THE FUTURE OF RESEARCH IN PSYCHIATRY.
A. Research and the Individual.
B. Research in Psychiatry.
C. Collaboration in Psychiatric Research.

V. BIBLIOGRAPHY.

I. INTRODUCTION

In few medical specialties is research more acutely needed than in psychiatry; and perhaps no comparably important area shows greater research neglect. At first glance this neglect seems unintelligible. An unlimited number of subjects worthy of research exists in the enormous population of mental patients and these patients as a group are not unwilling to cooperate in research projects. Staff members of psychiatric hospitals and clinics commonly express curiosity and interest in the innumerable unexplained phenomena they observe in the course of their professional work. Among the younger psychiatrists, the residents and junior staff members, interest and curiosity concerning psychopathology are almost universal. As they mature in their profession, however, their active interest in clarifying the unexplained usually wanes and an unquestioning acceptance based on clinical familiarity with strange behavior replaces curiosity.

A. Handicaps to Psychiatric Research

The relative absence of research activity in psychiatry has a complex basis. Some of the most obvious reasons are: (1) lack of personnel; (2) lack of professional time; (3) lack of funds; (4) lack of training in research methodology; (5) lack of rewards for research; (6) the complexity of the psychiatric field; and (7) lack of administrative support. In addition, certain factors tend to restrict the range of research.

1. Lack of Personnel: There are 7,608 fellows and members of the American Psychiatric Association as listed in the 1953 directory. Many of these psychiatrists have in one way or another indicated interest in research and list scientific publications, but the number of them actually engaged in full-time or major research activities is very small. The extent of published research, if we eliminate that which bears directly upon therapy, is almost negligible. There is, in fact, relatively little systematic research being carried out by psychiatrists if we exempt the therapeutic and diagnostic areas.

One reason for the paucity of systematic research lies in the serious dearth of psychiatrists. The growing awareness of the public that most psychiatric problems are treatable has increased the demand for service more rapidly than psychiatrists can be trained. Thus, the psychiatrist feels a strong social pressure to treat patients, regardless of his own personal preferences. If he has somehow managed, in the face of this pressure, to orient some of his time towards research, he falls into the habit of doing this research primarily upon the therapeutic problems rather than upon systematic and basic ones.

2. Lack of Time: Lack of professional time, and of genuinely appreciative cooperation from colleagues and superiors, limits drastically what the questioning psychiatrist can investigate. Even though the staff physician may have an hour or two during each day in which there are no routine duties to be performed, he can rarely count on this unless he can arrange to leave the hospital grounds for a free period. Attempts to use the "day off," the evenings and Sundays are unofficially but effectively frowned upon because they inconvenience other staff members, nurses, and attendants, or prove inconvenient or embarrassing when visiting relatives are expected. Research activity is expensive in point of time. The process of planning, conducting, and interpreting re-
search requires a considerable amount of professional time. These activities cannot ordinarily be carried out successfully with the duties and responsibilities associated with a heavy patient load. Further, the research interests may actually interfere with therapeutic activities since the two frequently have different goals. Hence, any psychiatrist who is oriented to and trained for research faces a difficult choice. He must choose between what is of the greatest benefit to his patients and what will, through scientifically designed experimental procedures, contribute to basic knowledge. Faced with this, he usually decides in favor of aid to the patients and further, his orientation to therapy renders the free periods useless for even thinking about research.

3. Lack of Funds: Adequate staffing of any hospital or clinic costs money. Few psychiatric institutions have funds per patient that can compare with the funds per patient of non-psychiatric institutions. Free time for research demands not only administrative officers who understand the need, but also funds which these officers may use to support research, so that they can shift the patient-load to enable a competent investigator to spend his time on psychiatric research. Moreover, research in psychopathology requires space and equipment; it cannot be conducted effectively in ward corridors, in offices which are subject to invasion by telephone calls or visitors, or in unused porches or linen closets—all of which have been the locus of some research projects.

4. Lack of Training in Research Methodology: Medical students and interns rarely receive even the most elementary training in research methodology for work in psychopathology. No amount of courage and enthusiasm can counterbalance this lack. Since few hospitals have available an expert on the design of behavioral experiment and clinical psychopathological investigation, the would-be research worker without such training has difficulty in conducting competent research. Also, only a few teachers of psychiatry at the level of either undergraduate medical training or residency training are research oriented, and, more important, even fewer are themselves engaged in any research project. All this contributes to the relatively large proportion of reports of single cases and simple statistical studies found in current psychiatric literature. Yet, considering the generally high intelligence level of medical school graduates in this country, it is safe to say that few of them would find the mastering of the elements of research design and of the statistical treatment of data either difficult or disproportionately time-consuming.

An important factor in the lack of training in research methodology is the absence within many medical school departments of psychiatry, of sections or divisions of psychopathology or psychodynamics where basic research can be carried on without concern for clinical demands. In medical education the creation of the separate pre-clinical departments of anatomy, physiology, biochemistry, pathology and bacteriology has permitted the development of these areas as basic medical sciences in their own right. With this change, teachers have developed many new and better scientific techniques and methods, clarified many theories, and discovered many new facts. The pre-clinical faculty member has enough status and security in his own work to be able to proceed with his research untroubled by clinical responsibilities.

5. Lack of Rewards for Research: Though research in some fields, notably in physics and chemistry as well as in general medicine, has a kind of mystical glamour, the same prestige and status do not appear to be accorded to psychiatric research. No important research tradition exists in psychiatry with which the young psychiatrist can identify. The resident who wishes to devote his career to psychiatric research is apt to be regarded with a questioning eyebrow, particularly in view of the far greater financial rewards of private practice. Usually the resident idealizes the brilliant and dogmatic practitioner who has attracted a band of followers, rather than the research professor patiently engrossed in digging out the facts.

6. Complexity of the Field: Another handicap to the recruitment of researchers in the area of psychopathology is the apparently overwhelming complexity of the field. Its real complexity becomes more obvious to the investigator as his knowledge of the field increases. He may even reach the position of throwing up his hands in despair, believing that it is impossible to apply ordinary scientific methodology to the subtle manifestations of psychopathology. His despair may increase with the recognition of the intangibility of many psychopathologic concepts, the lack of well defined and precise units of measurement, the multiplicity of causes for psychopathologic phenomena, and the many plausible though untestable hypotheses to account for these phenomena. All this, however, should constitute a challenge. The acquisition of scientific knowledge shows a salutary progression. A period of laborious grubbing for facts precedes a phase of accelerated progress.

7. Lack of Administrative Support: Faced with the increasing number of hospitalized mental patients, limited space to care for them, insufficient funds, and shortages of personnel, the hospital and clinic administrator utilizes his inadequate resources for service functions. Research becomes forgotten or postponed, and there remains in the administrator's thinking only a wishful hope that someone will somehow discover something to treat his patients more effectively. Eventually, the administrator no longer considers himself responsible for fostering a research staff and he may even come to look with disfavor upon members of the staff who express interest in research. Thus, the necessary climate and support for research growth in a hospital or clinic do not often exist.

The usual outcome of these barriers to research is that all but the most dauntless succumb and join with the older staff to care for as many patients as possible as best they can, while their drive toward doing research dwindles and disappears.
B. Factors Restricting the Range of Psychiatric Research

Judging from contemporary articles in psychiatric journals, exclusive of the psychoanalytic publications, one of the commonest classes of studies reported deals with somatic therapy, usually of a statistical nature. These result from the easy accessibility of case histories, which in an any well run hospital or clinic, provide certain types of clinical data. An administrator usually welcomes the summarization of treatment procedures in his own institution and willingly gives permission for a staff member to gather such material.

Next in order of prominence come studies of anatomical, physiological, and biochemical correlates of psychiatric illness. Here the medical background of the psychiatrist, with his many years of focussing upon organ and tissue pathology, dictates research interest. Moreover, extension of the routine physical examination easily include almost any desired anatomical and physiological information. Furthermore, a hospital is organized to make X-ray studies and the analysis of body fluids in a routine fashion far more readily than it is to make an objective appraisal of the personality.

Until recently, the study of psychodynamics and psychopathology has constituted a minor part of the research in psychiatry. Even the current trend toward such study, unless greatly accelerated and made more scientific, will not bring psychopathologic research up to the level of other research reported on the efficacy of somatic therapies, on the somatic correlates of psychiatric disorder, on census taking of community needs and resources, or on hospital administration. To some hospital psychiatrists the study of human behavior at any level other than the physiological and chemical seems trivial and even unnecessary. To them the study of maladjustment does not belong to the concept of psychiatric illness as a definite and specific disease entity nor to the conventional medical background any more than does anthropology, social psychology or sociology.

The foregoing discussion has been limited to hospitals and similar institutions. To include special research institutes and endowed research units would be to distort the overall picture, since these constitute only a small fraction of an enormous whole. Likewise, to go into the difficulties of research in relation to office practice would only obscure the general problem, since even the studies derived from these sources are usually worked out in connection with clinic groups and institutes. No one who views dispassionately the tremendous areas of ignorance and the many uncertain practices of the field of psychiatry can doubt the great need for research in the field. Much investigation has already been done in this area in the last century, but much more is needed desperately. The development of the various disciplines of science is such that the time is now ripe for collaborative research among various disciplines directed toward the solving of the problems of psychiatry. Many believe that such investigation offers more promise for making fundamental discoveries in this field than in any other. The rest of this report will deal with this question of collaborative research.

II. TYPES OF RESEARCH

A discussion of collaborative investigation suggests a review of the different kinds of research. Several areas of investigation show an immediate relevance to psychiatric research: naturalistic studies, subjective and behavioral investigations, studies of neurological and endocrinological determinants of behavior, and interpersonal, cultural and social determinants. In relation to these areas we can distinguish three major methods of study, all of which are commonly included under research: (1) the survey, (2) applied research, and (3) basic research.

A. Methods of Study

1. The Survey: Surveys involve a process of exploring in relation to some specific phenomenon or event, or a process of analyzing operations in a specific field. Surveys include: (a) new areas of interest; (b) an already operating organization; and (c) census-taking. In new areas of interest and in already operating organizations, the purpose of the survey is to formulate the general structure of the new area or the organization, and to provide a description of some or all of the significant activities involved. In census-taking, a survey consists of the enumeration of objects, phenomena or events, including such psychiatric items as the analysis of diagnoses and of therapy, or the tabulation of follow-up statistics.

From the survey can be derived objective facts in relation to operations being carried out. These facts may suggest hypotheses about the nature of these operations which, in turn, indicate the direction of further organized research. When a survey achieves this, it constitutes a useful first step in the total scientific process. If, however, it stops short at the survey level—even though it may prove helpful in determining administrative and policy decisions—it has not justified itself from the standpoint of genuine scientific research.

2. Applied Research: It is no longer possible to distinguish sharply between pure and applied research. The findings of both pure and basic research can often be applied immediately to practical problems without any important modification; and applied research frequently carries immediate implications for basic or pure research. Nevertheless, it is still useful to speak of applied research in referring to studies whose goal is that of solving problems of practical interest. An example of this is the systematic development of a new diagnostic technique, or the determination of the best way to space therapy sessions to obtain the most effective therapeutic results.3

Two significant subdivisions of applied research may be distinguished: the technological and the immediately useful. These have in common the characteristic of being limited in their degree of generality. Their goal, in other words, is not the deter-
mination of laws or principles which hold through a wide range of situations. Technological research concerns the best utilization of instruments, such as the most effective use of electric shock in depression, or the most effective accomplishment of a single task, such as the selection of hospital attendants. A great deal of applied research, however, has as its object, not the solution of a specific instrumental problem, but rather the application of an instrument to a large number of problems. An example of this last would be the development of a separate scale for male and female subjects on a personality inventory test.

Many investigations in both categories, the technological and the immediately useful, are carried out in psychiatry. Like surveys, they may be of unquestionable value in enabling clinicians to carry through certain important applications. The development of any applied science like clinical psychiatry, inevitably includes a large amount of such practical information which can be relied upon only after it has been painstakingly checked by such investigations. However, because of the limited character of its goals, this kind of research seldom has as wide application as has basic research.

3. Basic Research: Basic research concerns fundamental mechanisms and processes, whether the observations made are characteristic only of the individual studies or of a whole group. This fact presents some of the most difficult problems of methodology facing the clinician in any field. He treats a single individual, and yet, no observation of that individual can in itself constitute final confirmation of basic principles or laws. This situation has frequently resulted in conflict between (a) clinicians concerned with the single person and the direct approach to him, and (b) those who demand quantitative statements ("statistics") because they wish to find whether the principle discovered has general applicability.

It is true, of course, that clinical fact has sometimes been demonstrated by a single case—an outstanding example being Beaumont's studies of the gastric functions of Alexis St. Martin through the stoma in his abdomen. In such instances one does not really derive a law from one case, but assumes on the basis of many other known clinical facts that there are no significant individual differences in certain physiological characteristics of the stomach. Hence, the observations made on one man can be generalized with considerable confidence. In psychiatry so clear-cut an argument as this can rarely be justified.

However, in psychopathology and psychodynamics immeasurable profit is derived from the careful, intensive, and prolonged study of single cases. Such studies suggest principles which, when formulated into testable hypotheses, can lead to the formulation of generalized scientific theories.

B. Process of Planning Research

Careful planning and organization is of the greatest importance for research, whether basic or applied. Following Marquis, we shall distinguish three levels: (1) experimental design, (2) program design, and (3) policy design.

1. Experimental Design: First, the research worker deals with the planning of the single, restricted project, the organization of the specific experiment, taking into account such problems as sampling, control groups, other control conditions.

2. Program Design: Next, comes program design: the "planning of an integrated series of research activities focused on a central problem." Usually this involves the work of an investigator or a group of investigators concerned with a central problem or area, to which the research workers may devote a good portion of their scientific life. There are not many examples of this kind of activity in the mental health field. Such integrated programs of research, however, are likely to be quite fruitful and should be encouraged.

3. Policy Design: Third level. In policy design investigators are concerned with the overall planning of the distribution of an effort among programs or fields. In the field of mental health there is need for the development of an overall strategy of research, i.e., policy planning—the careful fitting together of past researches, present ones, and those planned for the future, so that eventually when organized they will make a mosaic that presents an overall picture. This necessary goal cannot be achieved until theory in psychiatry is more thoroughly integrated.

The individual research worker can work toward program planning by organizing his own investigations to dovetail with others which have been reported. In this way a more significant body of knowledge can be developed rather than fragments of unrelated research. Individuals can also participate in the planning of research and the setting up of priorities through committees and group work in other professional organizations. Even though more fruitful research, perhaps most of it, is now done by individuals working alone, the basic sciences underlying the practice of psychiatry are rapidly advancing to a point where better integrated formulations may be hoped for.

C. Levels of Research

In the area of our chief interest we note four major investigative methods now in use, representing four different degrees of control: (1) naturalistic observation, (2) semi-naturalistic observation, (3) free laboratory method, and (4) controlled laboratory method. Even though it is true that degrees of control follow along a continuum, certain general defining characteristics can be recognized which to some degree separate these various levels or types of method.

1. Naturalistic Observation: We may take as an example of our first method the observation and descriptive recording of the social interactions among a group of schizophrenics on the hospital ward. By this method a study can be made of the subject in his hospital environment. The observations reported
should be made as complete and accurate as possible within the limits of such a setting.

2. Semi-naturalistic Observation: Observations of the same group of schizophrenics on the ward before group psychotherapy for an hour and then after group psychotherapy for another hour could be made. Here the stimuli would still be quite varied and yet there is considerable freedom of response. There is, however, some limitation, particularly of the stimuli. Some special condition can be introduced into the situation and particular attention paid to the responsiveness of the patients to such stimuli. Such experiments can be carried out either in a laboratory setting or in a natural setting where conditions are subject to some control.

3. Free Laboratory Method: Here we cite an example the administration of the Thematic Apperception Test to a patient who is undergoing electroconvulsive treatment. The stimuli, in this instance, are varied to some extent and the responses, though limited, are multiple. Such a study is ordinarily carried out away from the ward, in special situations, and under partially controlled conditions.

4. Controlled Laboratory Method: Studies such as the reaction time or the response to caloric stimulation fall under this heading. Here both the stimulus situation and the response are limited and fixed in nature.

It will be seen that these different methods involve different degrees of control of both the stimulus situation and the range of response. If one limits both stimulus and response range increasingly, the possibility for accurate (usually instrumental) control is increased. With this increase in control comes the narrowing of the total response of the individual and emphasis on a part response. All of these methods are valuable at different stages of investigation. The ultimate purpose of the most adequate research design in clinical problems is the fullest possible control. As techniques improve and methods of research design increase in number and effectiveness, this goal will become more nearly realized.

D. Clinical Research

Clinical research may be defined in various ways. Usually the term refers to research with sick persons in a hospital or clinic. Clinical research commonly deals with disorders or diseases, their causation, course, diagnosis and treatment. Though clinical research is sometimes less precise than laboratory research, it may have basic aspects, such as observing a patient to study a disease process, and also applied aspects in treatment of the patient.

Clinical research may present complicated ethical problems. For example, a research design must be modified to serve the best interests of the patient: yet many other future patients may suffer, or be denied adequate treatment, if the research design is not carried out with precision. Moreover, to conduct research with patients is far more complicated than carrying on investigations with animals or with inanimate materials. This fact makes studies in psychiatry both lengthy and difficult. Frequently, the concepts used in such research are so complex, yet so inadequately defined, that in most central and significant problems it is possible only to observe systematically the uncontrolled or partially controlled phenomena. This is an early stage of any science—the naturalistic, taxonomic, classifying, and describing stage—and requires special skills. It is important for psychiatrists and others investigating these problems to master the difficult skills of the naturalist—careful, unbiased observation, and precise, inclusive reporting.

As clinical research advances beyond the stage of careful, unbiased observation and precise, inclusive reporting—that is, beyond the naturalistic and semi-naturalistic methods of study—it must increasingly be able to meet two paradoxical demands. One of these is that, in the face of the required deeper analysis of its problems, the integrity or "wholeness" of persons and real-life situations be preserved. The other is that continually greater restrictions must be introduced, both in the variety of stimulation and in the range of response, that variable be at least conceptually isolated and defined, and that the data gathered be readily convertible into forms susceptible to modern statistical treatment.

In an effort to meet these paradoxical requirements, more attempts are being made to create in the laboratory, situations that are as nearly life-like as possible. This is true particularly in the social psychological sphere where by setting up controls it is possible to investigate such complex relationships as leadership and group life, the effects of frustration on social relations of young children, and group dynamics in the laboratory.

Another approach that goes even further in this direction is that represented in psychological ecology. An example is the researches of Barker and his group at Kansas University. A small community, "Midwest, U.S.A.," has been selected as a natural habitat in which to study normal childhood development, systematically recording the free behavior of the town's children and analyzing it by various coding devices. Another example is Egon Brunswik's investigation of persons observed in their daily environment to see how they actually deal with perceptual problems.

In order to study mental phenomena as wholes and recognize their complexity, increasing consideration is being given to the place of the "intervening variable." This term refers to the fact that between the time of the stimulus and the response many variable factors play an important role in determining the final response. Whether thought of in terms of past learning, "the apperceptive mass," drives the unconscious, defenses, or in some other fashion, the growing awareness of the importance of such "unobservable constructs" and the efforts to define them by their effects are playing a considerable role in theoretical formulations.
III. TYPES OF COLLABORATION AND SIGNIFICANT
COLLABORATIVE AREAS

A. Types of Collaboration

The trend toward increasing collaborative research in the medical and behavioral sciences has been pointed out. Collaboration in research may mean any one of a number of things. In its most complete form, it implies the planning, executing, and reporting of research as a joint or group effort and achievement. Collaborative research also means research that is planned in concert, but carried out by separate individuals or groups, and then published as part of one program, or as parts of related but still separate enterprises. A third level of collaboration is represented by research planned and executed by individuals or groups, separately, and the results then fused and jointly reported, or the techniques brought into close relationship and utilized mutually on separate or joint problems. And, finally, collaboration may be loosely interpreted as applying to those research enterprises which are actually planned, executed and published separately by individuals or groups, but in the planning, execution and publishing of which there are successful attempts made to keep in close touch with the mutually interesting and relevant plans, progress and results of two or more parallel enterprises.

Collaboration may be the direct result of deliberate planning, as when a project is so organized that persons with different backgrounds and skills are brought together for the purpose of concerted action in relation to some specific problem or group of closely related problems. Such was the case, for example, in the Worcester State Hospital studies on schizophrenia, and more recently in the Columbia-Greystone Project.

Collaborative investigation may also evolve when research workers with different backgrounds and skills discover that their areas of interest include a significant overlap. This discovery then may lead either to direct joint endeavor, or to an active interchange of ideas in relation to formulation of problems, methods of attack, and treatment of data. Even in deliberately planned interdisciplinary research projects it often happens that new, spontaneous collaborative groupings emerge which show even greater vitality than the original project. Very different kinds of collaboration are represented in joint research now being carried on in psychopathology, and different degrees of participation can be distinguished. Some of these deserve special mention.

First of all, there is the relationship in which members of one scientific discipline utilize members of another discipline as technicians. Such a relationship is entered into willingly. For example, psychiatrists in one project are assisted by biochemists, as technicians, to make the biochemical determinations needed for their psychiatric research. The biochemists happen to be interested in the development of new techniques in making the required determinations, so that they are sacrificing nothing in lending their services to a psychiatric project which does not, in itself, interest them. Similarly, psychiatrists may use the help of a scientifically trained psychologist to get research data, for example, on ward behavior under a variety of conditions. The psychologist willingly collects these data because he can at the same time develop new techniques of research important to himself. On the other hand, competent persons in other fields may be employed as technicians by psychiatrists in situations where no such mutual benefit accrues to the technical expert. Such one way relationships, however, may not prove satisfactory.

Some other forms of partial collaboration also have their merits and their shortcomings. In some instances, collaboration occurs in formulating the problem or in planning the project, but not in the actual collection and treatment of the data. In others, the collection of data may represent the only stage of participation, both the planning and the utilization of data belonging to separate plans and purposes. For example, the analysis of body fluids may be carried out in relation to both endocrine changes for one group of research workers, and to environmental stress for another group, without joint interest at any other phase. In still other situations, data may be gathered from the same patients for widely different purposes by different research workers, and the data ultimately pooled for some general purpose secondarily conceived. In many such instances of partial collaboration the end result is less useful than it might have been had the interdisciplinary relationship been functionally more closely integrated throughout. Nevertheless, fruitful research frequently results from such incomplete participation.

Another form of partial collaboration is that which relates pathological to normal behavior in both humans and animals. Clinical observations, for example, often point the way to research into normal functions, and deviations that are observed to occur in normal behavior, or are intentionally induced by the manipulation of experimental variables, provide important clues for clinical research. The current investigations of psychoanalytic observations by persons trained in the techniques of experimental psychology illustrate the first of these, and the current attempts to evaluate psychotherapy in terms of learning theory illustrate the second. Animal experimentation is still insufficiently utilized in collaborative work in psychopathology, but it has proved fruitful where it has been intelligently used from the time of Pavlov down to the present. Both the relationship between clinical and experimental variables, and that between human and animal psychopathology, may be expected to be widely explored in the near future.

Complete collaboration is genuinely participative. It involves the approach to a common conceptual scheme by persons working in different theoretical frameworks, and the manipulation of the same or of comparable or compatible variables by different sets of techniques. Occasionally the disparate backgrounds and skills required for such work can be found in one and the same research worker who has
received training that gives him competence in two or more fields. Usually, however, complete collaboration is interdisciplinary. It calls upon individuals trained in different disciplines with different techniques of manipulating variables and with different methods of handling data conceptually and technically to integrate their efforts in pursuit of a unified goal.

In any effective collaborative research, the participants bring to the joint project, not only their different skills, but also different personalities and different immediate needs. As they continue to work together, however, a process of mutual education takes place, so that the attitudes of one party become better understood by the other, and the resulting degree of integration of effort may lead to a homogeneous research product. Nevertheless, the different backgrounds of the participants to research collaboration will nearly always cause some fundamental differences in point of view which cooperative experience does not erase. This sustained difference in basic attitude has definite positive values for continued cooperation. It means that problems once stated will be viewed from somewhat different perspectives. Consequently, they will usually be better formulated with more adequate checks upon interpretations and hypotheses, and more fruitful conclusions are likely to result than if the problems were looked at from only one point of view.

B. Significant Areas of Collaborative Research

There is scarcely an area in psychopathology and psychiatry which does not invite collaborative research. The areas in which significant collaborative studies have already been completed, or are now under way, have been listed to indicate the direction of contemporary trends in interdisciplinary participation:

1. Diagnosis.
 a. Development of methods for personality assessment from both structural and dynamic points of view.
 b. Development of diagnostic techniques for the classification of psychopathological syndromes.

2. Psychodynamics.

3. Psychosomatic interrelationships.

4. Group dynamics.

5. Personality development and organization.

6. Therapy.
 b. Evaluation of therapies, individual and group.

Each of these areas could be divided into integrated programs, and subdivided further into many interrelated projects. It is possible that only by some such means as this will the facts be established for sound clinical application and practice. Relevant to our discussion is the quotation:

"Some of those most actively concerned in the efforts to develop the psychodynamic aspects of psychiatry as a basic medical science have been most keenly aware of its shortcomings as a science and the difficulties of adequate scientific validation when dealing with multiple variables in an area where experimentation is difficult, where the personal equation is so large a factor in the making of discriminating observations and the drawing of inferences, and where 'controls' are so hard to keep 'controlled.' Those considerations constitute serious limitations and handicaps in the scientific development of psychodynamics. The actual psychiatric work with patients is the primary and essential laboratory for these developments. There is also need and opportunity for related animal studies, and for physiological and biochemical studies related to emotional motivation, to the range and modifiability of adaptive functions and to the role of the learning process in psychopathology and psychotherapy. Such studies will enhance the scientific validity of clinically derived ideas, and test and expand their implications."

IV. THE FUTURE OF RESEARCH IN PSYCHIATRY

A. Research and the Individual

In practice, it is unusual for collaboration in research to develop and flourish even within a single discipline. In spite of the currently vigorous efforts made to pull a number of persons together and to encourage them to work out basic problems in a single cooperative endeavor, it is still uncertain that this is really as desirable a goal as some administrators appear to believe. However, the joint atomic research of the Manhattan Project was obviously most productive. However economical of time and effort joint research may seem to be on rational grounds, it is the opinion of many experienced workers in research areas that new and original ideas, new and original techniques and conclusions are usually the product of one man's thinking—often of a slow and groping process carried out more or less in isolation. A brilliant example of this is Freud's clinical investigations. From his own comments, it is evident that he considered his relative isolation from other workers, and the almost complete lack of pressure on him to produce results and to publish them, to be exceedingly important factors in the development of his highly original and unique theories, techniques and conclusions.

It would be a mistake, however, to assume that anyone with the time for work and the freedom from distraction would produce a brilliant and original new contribution. Indeed, if this were true, we might well become apprehensive over the possibility that we should soon have a plethora of unique systems, with no solid structure of fact to give any of them stability. The solitary worker eventually needs the stimulation and the corrective influence of colleagues and critics and the level of collaborative endeavor represented by the formation of study groups, society meetings, and exchange of material.

The lone worker, the individualist in science, from whom may be expected to come the fundamen-
tally new and different theories, methods and interpretations, requires at least intermittent contact with other workers in his own and related fields. Otherwise, his productions may grow so unique as to become unrealistic and even aberrant, or else his work may to a considerable extent duplicate the work of others or become actually trivial and circumscribed. One of the most important results of publication is that of stimulating criticism and modifications, which may then serve as points of departure for further contributions on the part of the author which otherwise he might never have made. The solitary worker needs personal contact under conditions that encourage free interchange, such as provided by seminars, and by small, restricted group meetings where one is free from the dead weight of a large group and the consequent formality of communication.

Without such interchange, the lone worker risks diverting his efforts from a larger, meaningful problem to some fragmentary portion which in itself possesses little meaning. He may exert himself in the investigation of such a fragment in a way that his results, even though thoroughly documented and logically unassailable, have little importance. The product of such a disjunctive effort is likely to miss the fundamental problems and the relevance which were inherent in the original total situation from which the fragments were extracted. Collaboration at some one of the levels suggested in the introductory paragraph is essential for all but the genius; and for the work of the genius we cannot and need not plan.

B. Research in Psychiatry

In the introductory section we discussed several main causes for the paucity of research in psychiatry: lack of personnel, lack of time, lack of funds, lack of training in research methodology, lack of rewards for research, the complexity of the psychiatric field, and lack of administrative support. One attempted solution to this exceedingly vexatious problem of the relative lack of research productivity in psychiatry is that of passing his problems on to persons trained in other disciplines to do the work which psychiatrists themselves cannot do, or do not wish to do. The situation then is similar to one where a pharmaceutical company turns over research problems to medical students to work on. The parallel breaks down at more than one point, however, and these points of non-correspondence help to explain the failure of this solution in psychiatry to produce optimal results.

Although some aspects of psychiatric research do not require a medical background, in general it is rare that persons trained in non-medical fields (however superior they may be in research methodology and in the fundamental philosophy of psychiatric problems) are able to compensate adequately for their lack of training in clinical psychiatry. The danger is always present that the therapeutic interests of the patient, or the welfare of the non-medical subject, may not be safeguarded because of the relative inexperience of non-medical personnel with clinical practice. Likewise, certain aspects of clinical responsibility under present standards of practice cannot be passed on effectively to other persons excepting those in the medical-apprentice or intern setting. And finally, many problems of fundamental importance in psychiatry require a considerable training in psychodynamics for their thorough understanding, even though research upon them may not directly concern therapy.

It is, therefore, highly unrealistic for the psychiatrist to dismiss the problem of research in psychiatry by attempting to delegate or surrender scientific investigation to non-psychiatric personnel simply because he lacks either the time or the training in research methodology to make systematic investigations. He must enter into agreements with medical schools, hospital administrators, or foundations to release some of his time for planned research, so that he need not suffer too great a loss in income in exchange for the privilege, and so that his status as a research investigator may have official approval. If he is not fully trained in research methodology, and it is extremely unlikely that he will be under existing programs in medical schools or psychiatric residency, he must either obtain the necessary training with the same degree of devotion he gives to his clinical training, or else he must collaborate with a fully trained research worker to gain professional status.

Such an approach will, of course, not come near meeting the immense research needs in psychiatry. Various other ways to meet these needs must be considered. One such method is for psychiatrists to cooperate in training of potential teachers from non-medical disciplines (both social and biological) in order to provide background for them in the area of psychodynamics, and to meet some of the difficulties discussed above, and then to collaborate with such persons in research.

C. Collaboration in Psychiatric Research

Earlier in this paper we indicated the several types of collaboration and suggested that complete collaboration is genuinely participative. The personal element in collaboration must be taken into account if collaboration is to be successful. Ideally, each member of a collaborative enterprise should be sufficiently secure and have sufficient self-esteem to appreciate the contributions of his colleagues and be able to share in the recognition accorded to the research achievement without requiring special personal approval.

When different disciplines are involved, these ideals of a harmonious relationship may not be completely realized. Over a period of time in collaborative enterprises, minor personal incidents may interfere with genuine cooperation and the program be lost sight of because of interpersonal discord. Frequently, when one member of a collaborative team is thoroughly trained in research techniques and highly sophisticated in the nature of data interpretation, while another member contributes richly of ideas but lacks such training and sophistication,
disharmony develops. The idea man may regard his colleague as an unimaginative technician, while the technical expert may look with contempt on his associate as an impractical dreamer. Difficulties arise also when one or more members of a team are opinionated or domineering. Each tends to work against the other and each attempts to make himself the dynamic nucleus of the project personnel. An interdisciplinary project may end in failure because joint planning has not preceded the actual beginning of the work. Thus, an important psychiatric problem may be formulated and research begun on it before a trained psychologist is asked to participate. Or, a significant program of research in psychology may be conceived and put into operation before a psychiatrist is invited to cooperate. In either case, when a person from an allied field enters an already structured situation without adequate background, he is apt to find that his grasp of the project is faulty or that he disagrees with some of the plans or the use of certain techniques. He then faces the alternatives of compromising his own position, of declining to participate, or of withdrawing.

Most of these difficulties and many others which might be enumerated can be avoided in collaborative research if each interdisciplinary group involved appreciates the basic conceptions, the goals, the methodology and the needs of the other group. Successful collaboration presupposes an attitude of mutual understanding and respect, a recognition of limitations, an ability to welcome cooperation on a basis of professional equality in the planning of research projects, their initiation, execution and in the preparation, interpretation and reporting of results.

If the participants are professionally competent to share fully the task, the problem of interpersonal relationships, of group dynamics, is clearly of paramount importance in interdisciplinary collaborative research. There has been a growing trend within recent years to promote research seminars, institutes, and lengthy symposia. These often succeed in bringing together persons engaged in research, not only in the areas of clinical psychiatry and psychology, but also in anthropology, sociology, physiology, and the neurological sciences. The closer and more prolonged such contacts become, the greater is the likelihood of effective cross-fertilization between psychiatry and its related fields.

This initial report has indicated the broad research possibilities in the clinical material with which psychiatrists deal. The main factors which have restricted and hampered the development of research and a general orientation concerning research methods and inter-disciplinary collaboration. A subsequent report will discuss specific means of translating promising research leads and hypotheses about psychopathology and psychodynamics into systematic investigation.

BIBLIOGRAPHY

15. For a detailed discussion of the problems of collaborative research see "Methods and Problems of Interdisciplinary Research in Mental Health," Luszki, M. B. (Ed.), issued under the auspices of the Work Conference in Mental Health Research. To be published.
DISTRIBUTION OF THIS REPORT

American Psychiatric Association. Request List from Members.
Request List from Psychiatrists, Psychiatric Nurses, Psychiatric Social Workers, Psychologists, Medical Libraries, etc., United States and Foreign Countries.
Superintendents, clinical directors and directors of research at State Hospitals.
Division of Clinical and Abnormal Psychology of the American Psychological Association.
State Mental health authorities of the United States.
Provincial directors of mental health services in Canada.
Superintendents, clinical directors and directors of research of public mental health hospitals in Canada.
Directors of mental hygiene clinics.
Professors of psychiatry of medical schools.
Faculties of schools of psychiatric social work.
Faculties of schools of psychiatric nursing.
Directors of programs of psychiatric nursing in mental hospitals.
Directors of programs of clinical psychology in mental hospitals.
Chiefs of the neuropsychiatric services of Veterans Administration Hospitals.
Group for the Advancement of Psychiatry

The Group for the Advancement of Psychiatry has a membership of approximately 150 psychiatrists, organized in the form of a number of committees of about 10 members each, which direct their efforts toward the study of various aspects of psychiatry and toward the application of this knowledge to the fields of mental health and human relations. GAP is an independent group and its Reports represent the composite findings and opinions of its members only, guided by its many consultants.

Collaboration with specialists in other disciplines has been and is one of GAP's working principles. Since the formation of GAP in 1946 its members have worked closely with such other specialists as anthropologists, biologists, economists, statisticians, educators, lawyers, nurses, psychologists, sociologists, social workers, and experts in mass communication, philosophy, and semantics. GAP envisions a continuing program of work according to the following aims:

1. To collect and appraise significant data in the field of psychiatry, mental health and human relations;
2. To re-evaluate old concepts and to develop and test new ones;
3. To apply the knowledge thus obtained for the promotion of mental health and good human relations.

COMMITTEES

Committee on Child Psychiatry

Committee on the College Student

Committee on Cooperation with Governmental (Federal) Agencies

Committee on the Family
John P. Spiegel, Boston, Chr. Sidney Berman, Washington W. Floyd Blomberg, Boston George S. Stevenson, New York Jack Weinberg, Chicago

Committee on Forensic Psychiatry
Lawrence Z. Freedman, New Haven, Chr. Frank D. Charlot, New York. Manfred S. Guttman, Baltimore Philip Q. Roche, Philadelphia

Committee on Hospitals

Committee on International Relations

Committee on Medical Education

Committee on Preventive Psychiatry

Committee on Psychiatric Nursing

Committee on Psychiatric Social Work
Irene Jessely, Chicago, Chr. Anna Benjamins, Chicago, Co-Chr. C. Knight Aldrich, Minneapolis Edward C. F. Latham, Chapel Hill Marion Kenworthy, New York Hyman Lipman, St. Louis Don P. Morris, Dallas Peter Neubauer, New York Robert J. Nutter, Bethesda Ezio E. Weilsh, New York

Committee on Psychiatry in Industry

Committee on Psychopathology

Committee on Public Education

Committee on Research

Committee on Social Issues

Committee on Therapy

Contributing Members

February, 1944

Secretary
Malcolm J. Farrell, Waverly